МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ В.Н. КАРАЗИНА КАФЕДРА ФИЗИОЛОГИИ, БИОХИМИИ РАСТЕНИЙ И МИКРООРГАНИЗМОВ

АНАЛИЗ ЭКСПРЕССИИ ГЕНОВ У РАСТЕНИЙ

/специальный практикум/

- выделение ДНК
- выделение РНК
- измерение концентрации ДНК/РНК
- оценка чистоты и пригодности ДНК или РНК для исследования
- получение кДНК на матрице РНК (ОТ-ПЦР)
- детекция и оценка концентрации кДНК с геноспецифическими праймерами (РТ-ПЦР)
- выделение продуктов экспрессии генов (белков) и методы их электрофоретического анализа

Выделение ДНК из растительного материала /по Ивановой Н. с модиф./

(не содержащего большого количества фенолов, углеводов, жиров и вторичных соединений)

1. Растереть 1-2 проростка в холодной ступке с 0,5-1 мл холодного 2хЦТАБ-буфера.

2хЦТАБ-буфер:

2% ЦТАБ

1,4 M NaCl

100 мМ Трис-HCl, pH 8.0

20 мМ ЭДТА

0,1% в-меркаптоэтанол (добавить непосредственно перед использованием)

- **2.** Поместить массу в пластиковую завинчивающуюся пробирку (или эппендорф) и погрузить в водяную баню при температуре 60-65⁰C.
- **3.** Инкубировать 45 мин 1 час.
- **4.** Охладить до комнатной температуры и добавить равный объем (0,5-1мл) смеси хлороформ:изоамиловый спирт (24:1) или хлороформ:изопропанол (24:1), тщательно перемешать, инкубировать 20 мин при комнатной температуре.
- 5. Центрифугировать 15000 об/мин в течение 10 мин.
- 6. Отобрать пипетированием верхний водный слой буфера, содержащий ДНК в чистую пробирку.
- **7.** Добавить 1/5 от объема 5х ЦТАБ, перемешать, инкубировать при $60-65^{\circ}$ С 15-20 мин.

5х ЦТАБ:

5% ЦТАБ

350 мМ ЭДТА

- **8.** Охладить. Прибавить равный объем хлороформ:изопропанол (24:1), перемешать, инкубировать 5 мин при комнатной температуре.
- **9.** Центрифугировать 15000 об/мин 10 мин.
- **10.** Отобрать водную фазу в чистый эппендрф, поместить в ледяную баню и прибавить два объема холодного чистого изопропанола.
- **11.** Инкубировать при -20° С 30 мин -1 час до выпадения осадка ДНК.
- **12.** Центрифугировать 15000 об/мин 10 мин.
- **13.** Супернатант отбросить, а осадок ДНК промыть промывочным раствором около 20 мин при перемешивании.

Промывочный раствор:

3:7 ТЕ-этанол

ТЕ-буфер:

10 мМ Трис-аминометан, рН 8,0

1 мМ ЭДТА

- 14. Центрифугировать 15000 об/мин 15 мин для отделения осадка.
- **15.** Растворить осадок в 0.5 мл высоко солевого ТЕ при нагревании до 65° C.

Высоко солевой ТЕ:

1 M NaCl

10 мМ Трис, рН 8,0

2 мМ ЭДТА

- 16. Добавить двукратный объем абсолютного изопропанола.
- **17.** Инкубировать 2 часа при -20° С для преципитации ДНК.
- **18.** Центрифугировать 15000 об/мин 15 мин. /*Стадии 13-18 можно опускать*/
- **19.** Осадок промыть двукратно 70° С этанолом центрифугированием 15000 об/мин 10 мин.
- 20. Высушить ДНК от этанола на воздухе.
- **21.** Растворить в чистой воде при 37° С или ТЕ (10 мМ Трис, 1 мМ ЭДТА, рН 8,0).
- **22.** Хранить раствор ДНК при -20° С.

Демонстрационное видео:

https://www.youtube.com/watch?v=nWUJInri9D4 выделение ДНК https://www.youtube.com/watch?v=oLnY4X8Ztv0 выделение ДНК

Выделение РНК из растительного материала /по Гау и Лиу в модиф./

(не содержащего большого количества фенолов, углеводов, жиров и вторичных соединений)

Все реагенты готовятся из чистых новых реактивов в перчатках. Все манипуляции с выделением РНК проводят в перчатках, масках, шапочках, халатах и бахилах в чистой лаборатории (лаборатория вымыта с использованием пирокарбонатных растворов и обработана УФ). Вся посуда для выделения РНК должна быть новой или начисто вымытой с пирокарбонатами и выполоскана десятикратно бидистиллированной водой. Вода для работы должна быть бидистиллированной и очищенной путем обратного осмоса.

1. 1 г свежезамороженных проростков пшеницы растереть в охлажденной до 0° С ступке, добавить к гомогенной массе порциями 5 объемов буфера и перенести всю массу в пробирки с крышками.

Буфер:

3% ЦТАБ

1,5 M NaCl

200 мМ ЭДТА

100 мМ Трис рН 8,0

Добавить перед использованием к 9,15 мл буфера:

0,2 мл β-меркаптоэтанола

0,65 мл гепарина 5000 ЕД

- **2.** Инкубировать 30 мин при 65° C.
- **3.** Добавить равный объем смеси фенол:хлороформ:изоамиловый спирт (25:24:1), тщательно перемешать.
- **4.** Центрифугировать 10 мин при 18000 об/мин (15⁰C).
- 5. Собрать пипетированием супернатант, перенести в чистую пробирку и прибавить 1 мл 3М КАс.
- 6. Выдержать в ледяной бане 20 мин.
- **7.** Центрифугировать 10 мин при 15000 об/мин $(4^{\circ}C)$.
- 8. Собрать верхнюю водную фазу в чистые пробирки.
- 9. Прибавить 1/4 объема 10 M раствора LiCl и поместить пробы на -20° C на ночь.
- **10.** Центрифугировать 20 мин при 18000° C (4° C).
- 11. Отделить осадок, промыть осадок дважды 1 мл 2 M LiCl, повторив процедуру 10.
- 12. Отмытый осадок растворить в 1 мл 10 мМ Трис-НСІ (рН 7,5).
- 13. Прибавить к раствору 1/10 объема ЗМ КАс (рН 5,2) и выдержать на ледяной бане 30 мин.
- **14.** Отцентрифугировать 15 мин при $18000 \text{ об/мин } (4^{\circ}\text{C})$.
- 15. Отобрать супернатант и прибавить к нему 2,5 объема абсолютного этанола.
- **16.** Поместить на 3 часа при -20⁰C.
- **17.** Центрифугировать 30 мин при $18000 \text{ об/мин } (4^{\circ}\text{C})$.
- **18.** Осадок промыть 80% этанолом, вакуумно высушить, растворить в 150 мкл свободной от РНК бидистиллированной воды или ТЕ (10 мМ Трис, 1 мМ ЭДТА, рН 8,0). Хранить РНК при -70° C.

Демонстрационные видео:

Выделение РНК с помощью TRIazol-реагента

https://www.youtube.com/watch?v=MgNicWbANkA

Выделение РНК с помощью силикагелевых фильтров

https://www.youtube.com/watch?v=9WSkt9JEok8

Измерение концентрации ДНК/РНК спектрофотометрически при А260/280

- **1.** Для измерения берут несколько аликвот 100, 200 и 300 мкл нуклеиновой кислоты (ДНК или РНК), растворенной в ТЕ-буфере.
- 2. Вносят в лунки планшета или кюветы для спектрофотометра.
- **3.** Контролем служит ТЕ.
- 4. Измеряют поглощение при А260 для нуклеиновых кислот и затем А280 для белков.
- **5.** Раствор с концентрацией двуцепочечной ДНК 1 мг/мл при 260 нм в среднем дает 20-50 единиц А, а одноцепочечной РНК 10-40 единиц А.
- 6. При A280 проверяют чистоту препаратов НК от белковых веществ.

Демонстрационное видео:

Использование микроспектрофотометра NanoDrop приведено по ссылке https://www.youtube.com/watch?v=FiGZnNs2xXY

Очистка, амплификация ДНК и измерение ее концентрации при подготовке библиотек ДНК https://www.youtube.com/watch?v=xxzImjtRM4c

Исследование препаратов ДНК/РНК методом горизонтального электрофореза в агарозе. Визуализация результатов электрофореза

- **1.** Приготовление 0,8% агарозного геля (процент геля подбирается под задачу):
 - 0,8 г агарозы + 95 мл дистиллированной воды, затем кипятить до растворения;
 - добавить к горячему раствору 5 мл TPEx20 буфера или TBEx20 буфера, еще немного прокипятить;
 - охладить (периодически перемешивая) до 60° C.
 - добавить 20 мкл раствора бромистого этидия до конечной концентрации 0,2 мкг/мл (20 мкг/100 мл) из стокового раствора бромистого этидия 1 мг/мл, перемешать;
 - в кювету, зафиксированную в устройстве для заливки гелей, залить горячую агарозу, вставить гребенки для формирования лунок.

 Буфер ТРЕх20 (на 1 л):
 Буфер ТВЕх20 (на 1 л):

 87 г Трис-аминометан
 108 г Трис-аминометан

94 г NaH₂PO₄ 55 г H₃BO₃ 7,44 г Na₂ЭДТА 7,44 г Na₂ЭДТА

Довести HCl pH до 8,3 Довести H_3BO_3 pH до 8,3

2. Приготовить буфер для внесения проб ДНК или РНК (на 20 мл):

5 мг бромфенолового синего (или крезоловый красный, или метиленовый синий, или другой) 8 г сахарозы или 8 мл глицерина

- 3. Смешать 20 мкл образца и 4 мкл буфера для внесения (1:5).
- **4.** Поставить кювету с гелем в камеру и заполнить ее электродным буфером 1х ТРЕ или ТВЕ (предварительно разбавив 20х буфер в 20 раз).
- 5. Аккуратно внести образцы, предварительно смешанные с буфером для внесения.
- **6.** Разгонять ДНК от к +, при 60-80 В и 100 мА. Длительность электрофореза 2-4 часа.
- **7.** Гель с подложкой поместить в трансиллюминатор, сфотографировать гель (задокуметировать) в ультрафиолете.

Демонстрационное видео:

https://www.youtube.com/watch?v=nWUJInri9D4 выделение ДНК и горизонтальный электрофорез

Проведение обратной транскрипции для получения кДНК

Для получения кДНК используют следующие праймеры:

- олиго-дТ для обратной транскрипции всех мРНК, содержащих поли-А-хвост (матричные РНК эукариот)
- рандомные олиго-праймеры (чаще гексамеры) для случайной обратной транскрипции всех РНК
- специфические праймеры для обратной транскрипции только необходимых мРНК (определенного гена и белка), которые подбирают по последовательности нуклеотидов искомой РНК согласно базам данных.

Проведение обратной транскрипции

- 1. Установить в ледяную баню две серии эппендорфов (+контроль и -контроль).
- **2.** Установить полистероловую пробирку большого объема в ледяную баню, в которой приготовить следующую смесь:
 - 1 мл 10 мМ дНТФ (конечная концентрация 500 мкМ каждого);
 - 4 мл 5х буфера для проведения ОТ (1х конечная концентрация) следующего состава 250 мМ Трис-HCl (рН 8,3), 375 мМ КСl, 15 мМ MgCl₂;
 - 2 мл 0,1 М ДТТ (10 мМ конечная концентрация);
 - 0,5 мл 3 мг/мл одного из необходимых праймеров (конечная концентрация 1-10 мкМ);
 - 0,5 мл (40 ЕД) ингибитора РНКаз (идет в наборе, например, диэтилпирокарбонат).
 - Тщательно перемешать. На каждую пробу идет по 8 мкл.
- **3.** В эппендорф добавить:
 - 8 мкл приготовленной смеси;
 - 12 мкл выделенной РНК (общая добавляемая концентрация до 2 мкг);
 - 2 мкл растовра Superscript II обратной транскриптазы.
- 4. В контрольные пробирки добавить 2 мкл бидистиллированной воды вместо транскриптазы.
- **5.** Инкубировать эппендорфы в амплификаторе или ультратермостате при 42° C 50 мин для протекания обратной транскрипции.
- **6.** Затем 5 мин при $85-92^{\circ}$ С для денатурации обратной транскриптазы.
- 7. Остановить реакцию перенесением пробирок в ледяную баню.

Демонстрационное видео:

Проведение ОТ-ПЦР

https://www.youtube.com/watch?v=qmACKSvFZpM

Проведение Real-Time PCR для тестируемого гена /пример с геном GliA-1/

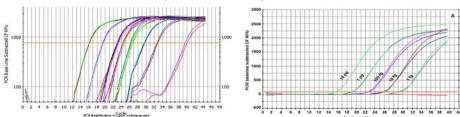
- **1.** В пробирка на 1,5 мл приготовить смесь в необходимом объеме. Ниже указаны объемы реагентов на 1 пробу из рассчета 25 мкл общей смеси:
 - 12,5 мкл 2x GoTaq Green Master Mix (смесь буфера, нуклеотидов, флюорисцентных меток и полимеразы для РТ-ПЦР) (конечная концентрация 1x);
 - 0,5 мкл 25 пмоль/мкл прямого (+) праймера GliA-1 (конечная концентрация 0,5 пмоль/мкл);
 - 0,5 мкл 25 пмоль/мкл обратного (-) праймера GliA-1 (конечная концентрация 0,5 пмоль/мкл);
 - 10,5 мкл H_2O до конечного объема 24 мкл.
- **2.** Перенести по 24 мкл МастерМикс (из приготовленной смеси) в необходимое число лунок планшета или 0,2мл-пробирок для РТ-ПЦР.
- **3.** Необходимо минимум 5 повторов опытного образца, 5 отрицательных контролей без образцов, 5 контролей без МастерМикса, вместо которого вода с образцами.
- **4.** Прибавить по 1 мкл кДНК, полученной методом ОТ (матрица) в опытные лунки и контроль образцов.
- 5. Запустить термоциклер.
- 6. Прописать пометки для каждой лунки, которую заполняли.
- **7.** Прописать программу (температуры отжига праймеров подбирают экспериментально или исходя из данных литературы, а также с помощью программ, например, PerlPrimer):

Step1: 95°C 2 мин /общая денатурация всех НК в образцах, шаг более не повторяется/

Step2: 95°C 30 сек /денатурация/

Step3: 52⁰C 30 сек /отжиг (аннелинг) праймеров/

Step4: 72°C 1 мин /полимеризация/


Step5: Go to step 2, повтор 30 раз (многократная репликация)

Step6: 72° C 5 мин /дорепликация/

Step7: 4^oC forever

/Температуры и длительность шагов могут меняться в зависимости от методики!/

- **8.** Оценить количество мРНК данного исследуемого гена, к которому применяли праймеры, можно по сравнению со стандартными пробами, содержащими известное количество кДНК либо этого гена, либо другого в качестве свидетеля.
- 9. Прибор выдает графики показывающие количесвто ампликонов (в нашем случае ампликоны исследуемого гена будут зелеными) в течение заданных циклов. График имеет лаг-фазу, когда концентрация ампликонов слишком мала для детекции, затем идет логарифмическая фаза быстрого увеличения количества ампликонов, и далее графи выходит на плато. Чем раньше начинается лог-фаза графика (меньшее число циклов), тем выше концентрация исследуемой кДНК, и, соответственно, комплиментарной ей исследуемой мРНК.

Анализ оптыных образцов

Калибровка по стандартным образцам

шаги повторяются, см. Step5

10. Пробы после РТ-ПЦР также можно разделить методом горизонтального электрофореза (см. работу №3).

Демонстрационные видео:

https://www.youtube.com/watch?v=QQwL13Ng6Ks
проведение ПЦР в реальном времени
https://www.youtube.com/watch?v=BiWkioda7mo
общие принципы технологии ПЦР
https://www.youtube.com/watch?v=kvQWKcMdyS4
общий принцип ПЦР в реальном времени
https://www.youtube.com/watch?v=1vRByU2VMUE
работа с термоциклером ABI

Препаративное выделение и фракционирование белков по Осборну в модификации Жилича с соавт. / на примере глеадинов /

І. Подготовка растительного материала

- 1. Отобрать по 5-10 хороших зерновок каждого сорта/линии пшеницы.
- 2. Растереть зерновки пшеницы в ступке до мелкодисперсной муки.
- 3. В пластиковые завинчивающиеся пробирки внести по 500 мг муки.

II. Экстракция масел /обезжиривание/

- 4. В пробирки добавить 3 мл бутанола, перемешивать на вортексе 15 мин.
- 5. Центрифугировать при 15000 об/мин 10 мин.
- 6. Слить супернатант и добавить к осадку 2 мл петролейного эфира. Тщательно перемешать.
- 7. Центрифугировать при 15000 об/мин 10 мин.
- **8.** Вакуумно высушить осадок. /Процедуры 3-7 можно опустить, если в зерне содержится мало масел или предварительно удалить зародыши/.

III. Экстракция водо- и солерастворимых белков /глобулины и альбумины/

- **9.** К муке или осадку после обезжиривания прибавить 3 мл 0,5 M NaCl и перемешивать на вортексе 30 мин при 4° C.
- **10.** Центрифугировать 15000 об/мин при 4° С 15 мин. Супернатант слить или отобрать в отдельную пробирку.
- 11. Процедуры 9-10 повторить дважды.
- **12.** К осадку прибавить 3 мл дистиллированной воды для отмывки солей, перемешивать на вортексе 20 мин при 4° C.
- **13.** Центрифугировать 15000 об/мин при 4° С 15 мин. Супернатант слить или перенести в пробирку с предыдущими фракциями.

IV. Экстракция спирторастворимой фракции белков (глеадины)

- **14.** К осадку прибавить 3 мл 70^{0} этанола и перемешивать на вортексе 1-1,5 часа при комнатной температуре.
- 15. Центрифугировать при 15000 об/мин 15 мин.
- 16. Супернатант перенести в отдельную пробирку.
- **17.** Для доэкстракции прибавить к осадку 2 мл 70^{0} этанола и перемешивать на вортексе 30 мин при комнатной температуре.
- 18. Центрифугировать при 15000 об/мин 15 мин.
- **19.** Объединить экстракт с предыдущим. Затем 5 мл экстракта вакуумно сконцентрировать до 2,5 мл и хранить в закупоренных пробирках при 4^{0} С не более недели.

/далее по необходимости/

V. Экстракция глютенинов

20. К осадку прибавить 7 мл 50% н-пропанола и 1% ДТЭ. Экстрагировать трижды. Супернатанты объединить.

VI. Экстракция щелочерастворимых белков

21. К осадку прибавить 1н или 2н NaOH. Экстрагировать трижды. Супернатанты объединить.

VII. Нерасторимые глютенины (глютены)

22. В осадке определить содержание общего азота микрометодом по Кьельдалю. И пересчитать на белок с коэффициентом 5,7.

Разделение белков с помощью нативного кислого электрофореза по Новосельской в модификации Дукича с соавт.

1. Приготовить 5 мМ Al-лактатный буфер объемом 2 л.

5 мМ Al-лактатный буфер:

3 r AlCl₃

6,5 мл 80% молочной кислоты

Довести дистиллированной водой до 800 мл

Выставить pH 3,1 с помощью 20% растора AlCl₃ или 1 M NaOH

Довести объем дистиллированной водой до 2 л.

2. Приготовить основу для 7,5-8,33% геля:

12,5 г (12 г) акриламида

0,62 г (0,6 г) бис-акриламида

0,15 г (0,2 г) аскорбиновой кислоты

200 мкл 10% Fe₂(SO₄)₃ или 80 мкл FeSO₄·7H₂O

Растворить все компоненты в 150 мл Al-лактатного буфера (pH 3,1)

После приготовления и растворения всех компонентов гель профильтровать. Хранить в плотно закупоренных сосудах из темного стекла. Перед использованием охладить до 0° C.

- **3.** Приготовить раствор 1% перекиси водорода из 3% перекиси водорода (аптечная) и охладить до 0° C.
- 4. Стекла вымыть с детергентом и высушить.
- 5. Собрать камеру и установить в устройство для заливки геля.
- 6. Приготовить 50 мл 1% агара на АІ-лактатном буфере.
- **7.** Залить в подложку остуженный до 60° C агар и дать застыть /герметизация щелей между стеклами/.
- **8.** 40 мл основы геля пропустить через фильтр Шота №3 путем вакуумной фильтрации для дегазации и охладить до 0°C.
- **9.** В 40 мл охлажденного геля внести 60-80 мкл холодной 1% перекиси водорода, один раз перемешать и <u>немедленно быстро</u> заполнить пространства между стеклами, <u>сразу же вставив гребенку</u>. /Гель полимеризуется в течении 30-45 сек!!!/.
- 10. Приготовить буфер для внесения образцов:

4 мл глицерина

6 мл Al-лактатного буфера

5 мг метилового зеленого

- **11.** Приготовить образцы для внесения. Для этого в эппендорф добавить 100 мкл спиртового раствора экстракта глеадинов и 50 мкл буфера для внесения. Тщательно перемешать до полного смешения жидкостей с разными плотностями.
- 12. Аккуратно вынуть гребенку из геля, лунки промыть буфером и почистить.
- 13. Удалить буфер из лунок и снова заполнить их буфером наполовину.
- 14. Внести в лунки по 20-25 мкл образцов, предварительно смешанных с буфером для внесения.
- **15.** Аккуратно наслоить буфер до краев лунок.
- **16.** Одеть крышку на прибор и подключить электроды к источнику тока. Разгонку вести от + к при 70 мА и 360 В. Длительность электрофореза 4-5 часов.
- **17.** По окончании отключить прибор, кассету из стекол поместить в воду и снять одно из стекол, оставив гель на втором в качестве подложки. /Перекисные гели хрупкие в сравнении с персульфатными!/.
- 18. Приготовить окрашивающий раствор объемом 250 мл:

0,5 г амидочерный Б

6 г ТХУ

14 мл уксусная кислота

80 мл метанол

150 мл вода

- **19.** Залить гель на стекле окрашивающим раствором. Окраску проводить 2 часа при периодическом помешивании для лучшей диффузии красителя.
- 20. Слить краситель, промыть небольшим количеством воды.
- 21. Залить гель раствором для обесцвечивания №1 объемом 250 мл:
 - 18 мл уксусная кислота
 - 80 мл метанол или этанол
 - 152 мл вода
- **22.** Отмывать 45 мин 1 час при постоянном помешивании. Затем слить отмывочный раствор и ополоснуть гель небольшим количеством воды.
- 23. Залить гель раствором для обесцвечивания №2:
 - 50 мл метанола или этанола
 - 70 мл уксусной кислоты
 - 880 мл воды
- 24. Обесцвечивать меняя раствор №2 четыре раза до полного обесцвечивания.
- **25.** Промыть гель водой.
- 26. Сфотографировать или отсканировать гель, задокументировав результаты.

Демонстрационное видео:

https://www.youtube.com/watch?v=YoKUiTWjy18 обзор применение методов электрофореза https://www.youtube.com/watch?v=jt1a8AUeJcg электрофорез по Лэмли

Использованные источники литературы:

- **1.** <u>Cota-Sanchez J.H. et al.</u> Ready-to-use DNA-extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissues // Plant Mol Biol Reporter, 2006. Vol. 24. P.161–167
- 2. <u>Ivanova N.V. et al.</u> An inexpensive, automation-friendly protocol for recovering high-quality DNA // Molecular Ecology Notes, 2006. Vol. 6. P.998–1002.
- 3. <u>Song H., Liu Y. et al.</u> An improved method for total RNA isolation from recalcitrant loquat (*Eriobotrya japonica* Lindl.) buds // Pak. J. Bot., 2011. Vol. 43, N 2. P.1163–1171
- **4.** Сомма М., Кверчи М. Анализ образцов пищевых продуктов на присутствие генетически модифицированных организмов: Сессия 5. Электрофорез в агарозном геле / Всемирная организация здравоохранения. Европейское бюро.
- **5.** Testing gene expression be reverse transcriptase PCR (rt-PCR). Overview
- **6.** <u>Žilić S., Barać M. et al. Characterization of proteins from grain of different bread and durum wheat genotypes // Int. J. Mol. Sci., 2011. Vol. 12. P.5878–5894: doi:10.3390/ijms12095878</u>
- 7. <u>Đukić N., Matić G. et al. Biochemical analysis of gliadins of wheat Triticum durum // Kragujevac J. Sci.,</u> 2005. Vol. 27. P.131–138
- **8.** *Новосельская А.Ю, Метаковский Е.В., Созинов А.А.* Изучение полиморфизма глиадинов некоторых пшениц методами одномерного и двухмерного электрофореза // Цитология и генетика, 1983. − Т.17, № 5. − С.49–45
- **9.** <u>Tenea G.N. et al. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions // BMC Research Notes, 2011. Vol. 4. P.373: doi:10.1186/1756-0500-4-373</u>
- **10.** <u>Schmittgen T.D. et al.</u> Quantitative reverse transcription polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods // Analytical Biochemistry, 2000. Vol. 285. P.194–204