EC 07-VII Biology of Mineral Nutrition of Plants

Code	EC 07-VII
ECTS credits	4
Attendance time	7 Semester
Language of instruction	Ukrainian
Duration	1
Cycle	Each Winter Semester
Coordinator	Associate Professor, PhD, Andrii Schogolev
Instructor(s)	Associate Professor, PhD, Andrii Schogolev
Allocation of study programmes	Biology
Recommended	Cell biology; Structural Botany: Anatomy of Plants
prerequisites	Chemistry; Physics; Microbiology; Mycology; Plant Physiology and Biochemistry.
Learning objectives	Soil is the natural environment of plants` mineral nutrition. Fundamentals of soil microbiology. Absorption and transport of minerals by plants. Mineral elements in plants. Fertilizers.
Syllabus	Chapter 1: Soil as a Natural Environment for Mineral Nutrition of Plants and Foundations of Soil Microbiology
	Topic 1: Physical and Chemical Characteristics of Soil
	Composition of the soil and its granular absorbing complex
	Soil pH and chelates
	Morphology and classification of soils
	Human activity's influence on soil composition
	Topic 2: Basics of Soil Microbiology
	Role of microorganisms in soil formation
	Environmental factors affecting microorganism development in soil

Types of soil nutrition microorganisms
Basic concepts of soil microorganisms' ecology
Spatial, taxonomic, and functional structure of microbiological groups
Types of relationships between microorganisms
Symbiosis of microorganisms with higher plants
Participation of microorganisms in substance cycling in nature
Topic 3: Nitrogen Fixation
Nitrogen cycle in the biosphere
Biological nitrogen fixation and its types: free-living, symbiotic, associative
Molecular mechanisms of nitrogen fixation
Genetic systems participating in symbiosis
Factors influencing efficiency of symbiotic nitrogen fixation
Topic 4: Associative Nitrogen Fixation and Applied Aspects
Discovery and features of associative diazotrophs
Mechanism and genetic determination of associative nitrogen fixation
Influence of environmental factors on associative nitrogen fixation
Applied aspects: genetic engineering, strains of nodule bacteria, biological fertilizers
Chapter 2: Absorption and Transport of Mineral Substances by Plants
Topic 5: Mechanisms of Absorption of Mineral Substances by Roots
Functions and structure of roots
Changes in root growth in response to nutrient deficiency
Inflow of ions into the cell and root
Types of membrane transport: passive and active absorption

Energetic characteristics of the absorption process
Absorption of ions by an intact plant and influence of environmental factors
Role of mycorrhiza in absorption of mineral substances
Topic 6: Transport of Substances in Plants
Movement of ions throughout the plant
Symplast and apoplast: their role in substance transport
Xylem transport: structure, composition of sap, and regulation
Phloem transport: structure, composition of sap, and regulation
Pedestrian cells and circulation of nutrients in plants
Chapter 3: Mineral Nutrients of Plants and Fertilizers
Topic 7: Physiological Role of Elements of Mineral Nutrition
Mineral content in plants and its importance
Nitrogen: physiological role, forms of nutrition, absorption, and regulation
Phosphorus:
Availability of soil phosphorus for plants and its compounds
Transport of phosphate through membranes and phosphorus metabolism
Physiological role in energy metabolism, nucleic acids, phospholipids, coenzymes
External signs of phosphorus deficiency
Sulfur:
Plant sulfur assimilation and mechanism of sulfate reduction
Role of sulfur in metabolism and metabolic disorders due to deficiency
External signs of sulfur deficiency
Potassium:
Physiological role and doses required for plant nutrition

	Role in osmoregulation, cation-anion balance, and stomatal movements
	External signs of potassium deficiency
	Calcium and Magnesium:
	Content in soil and plants, physiological role, and distribution in cell structures
	Ca2+ and intracellular signaling systems, ways of Ca2+ transmission-signal
	External signs of calcium and magnesium deficiency
	Chlorine, Silicon, and Aluminum:
	Functions of chlorine in plants and effects of excess
	Physiological role of silicon and aluminum
	Microelements:
	Modern ideas about the role of microelements in plant vital activity
	Physiological role of boron, iron, copper, zinc, molybdenum, manganese, and cobalt
	Influence of external factors on absorption of mineral substances
	Ions and hydration of cytoplasmic colloids, antagonism of ions
	Topic 8: Characteristics and Use of Fertilizers
	Root nutrition as a factor in plant productivity management
	Physiological basis of using mineral fertilizers
	Classification of fertilizers: mineral, organic, bacterial, simple, and complex
	Nitrogen, phosphorus, potassium, magnesium, and microfertilizers
	Ways, doses, and timing of fertilizer application
	Fertilizers and their impact on plant yield and productivity
Literature	Iutynska H.O. Gruntova Mikrobiolohiya: Navchalnyi posibnyk. Kyiv. Aristei, 2016. 284s.

	Kots S.Ya., Petersen N.V. Mineralni elementy i dobryva v zhyvlenni roslyn. Kyiv. Lohos, 2011.150 s. Kots S.Ya., Malichenko S.M., Krugova O.D. ta in. Fizioloho- biokhimichni osoblyvosti zhyvlennya roslyn biolohichnym azotom. Kyiv. Lohos, 2011. 271 s.
	Tkachuk S.S., Bohdan T.Z. Azotnyi obmin: adaptatsiya roslyn do umov zhyvlennya. Kyiv. Avers, 2000. 200 s.
Teaching and learning methods	Lecture (3 WH), Laboratory (1 WH)
Workload	 Classroom hours: 32 h Laboratory hours: 16 h Individual study time/preparation and postprocessing: 72 h Total: 120 h
Assessment	The assessment consists of written examination and preliminary graded study achievements
Grading procedure	The module grade is the sum of preliminary study achievements and the examination grade
Basis for	Ecophysiology of Plants and Microorganisms